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The acoustic radiation pressure exerted by a plane - progressive or standing - sound 
wave on a compressible sphere suspended freely in a viscous fluid is calculated. In 
deriving the general expression for the radiation pressure, it is supposed that the radius 
of the sphere is arbitrary. Two limiting cases of interest are then considered. In the first 
of these, it is assumed that the sound wavelength is much larger than the radius of the 
sphere which is, in turn, much larger than the viscous wavelength, it being supposed 
that this condition is satisfied both outside and inside the sphere. In the second case, 
the situation is investigated when the radius of the sphere is small compared with the 
viscous wavelength which is, in turn, much smaller than the sound wavelength, it being 
supposed that this condition is satisfied, as before, both outside and inside the sphere. 
It is shown that in both cases the expressions for the radiation pressure are drastically 
different from the well-known expressions for the radiation pressure in a perfect fluid : 
the calculation of the radiation pressure from the formulae obtained for a perfect fluid 
in the cases when the effect of viscosity is not negligible gives both quantitatively and 
qualitatively wrong results. 

1. Introduction 
An object placed in a sound field is known to experience a steady force which is 

usually called the acoustic radiation pressure. This force is an analogue of the optical 
radiation pressure exerted by an electromagnetic wave on an electrically or magnetically 
responsive object, but the radiation force generated by a sound field is in general 
substantially larger than the electromagnetic radiation force (Jones & Leslie 1978). 

For this reason, the acoustic radiation pressure is found useful in many applications, 
such as acoustic levitation, medical ultrasound equipment, etc. (Wu & Du 1990). For 
example, in acoustic levitation the radiation pressure is used to counteract the 
gravitational field for the purpose of containerless processing of materials and studies 
in fluid dynamics (Trinh 1985; Lee, Anilkumar & Wang 1991). This force also plays 
an important role in other acoustic phenomena, such as acoustic cavitation and 
sonoluminescence (Walton & Reynolds 1984). 

The original theory of acoustic radiation pressure was proposed by Rayleigh (1894, 
pp. 43-45). The acoustic radiation pressure on a rigid sphere suspended freely in a 
plane progressive sound wave field or plane standing sound wave field was first 
calculated by King (1934), who, however, considered the radius of the sphere to be 
arbitrary. The compressibility of the sphere was taken into account by Yosioka & 
Kawasima (1955). This allowed King’s theory to be generalized to cases of dispersed 
particles of finite compressibility, such as the motion of gas bubbles in a liquid or of 
liquid drops in another liquid. 

However, the above authors and others who have dealt with this matter have 
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neglected the effects of viscosity: as far as we are aware there are no works in which 
these effects have been taken into account consistently and rigorously. Tn the present 
paper this gap in the theory is filled, i t .  the acoustic radiation pressure on the sphere 
is calculated assuming that the media outside and inside the sphere behave as viscous 
compressible barotropic fluids. The theoretical investigation involves the calculation of 
the radiation pressure exerted by a plane - progressive or standing ~ sound wave on 
the sphere, it being supposed that the radius of the sphere is arbitrary. The limiting 
cases are then considered when A, 4 R < A,, /i, 4 R 4 ia or R < A, 4 A,, R 4 n", 4 is, 
where R is the radius of the sphere; A,, ih are the sound wavelengths outside and inside 
the sphere, respectively; and A,, jv are the viscous wavelengths outside and inside the 
sphere, respectively. To anticipate, the expression for the radiation pressure in a 
viscous fluid is found to be drastically different from that in a perfect fluid. In 
particular, in a viscous fluid the radiation pressure due to a plane progressive wave can 
cause the sphere to move both in the direction of wave propagation and in the opposite 
direction, while in a perfect fluid the sphere is always urged away in the direction of 
wave propagation (Yosioka & Kawasima 1955). These interesting phenomena are also 
observed in a standing wave field. 

2. Derivation of a general expression for the radiation pressure 

described by the following tensor equations : 
Consider a spherical particle suspended freely in a viscous fluid whose motion is 

P = P(l.1, (2.4) 
where cri, is the stress tensor, o is the fluid velocity, p is the fluid pressure, p is the fluid 
density, y is the shear viscosity, and 6 is the bulk viscosity. By 'spherical particle' we 
shall mean either a gas bubble in a liquid, or a liquid drop in a gas or in another liquid. 
So, the fluid surrounding the spherical particle can be either a liquid or a gas. This is 
also the case for the medium inside the sphere; we shall suppose that the medium inside 
the sphere behaves as a viscous fluid (liquid or gas) too, so that its motion is described 
by equations corresponding to (2.lt(2.4). 

As the sound wave propagates, the sphere will experience acoustic radiation 
pressure, written as follows: 

/ I -  \ 

where s( t )  is the position of the sphere surface at time t ,  n is the outward normal to the 
sphere surface, and ( ) means an average over a sound wave cycle. 

With accuracy up to the second-order terms in the amplitude of the incident sound 
wave, (2.5) can be rewritten as 

(2.6) 
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where so is the unperturbed surface of the sphere, ~ $ 2 1  is the stress tensor of first order 
in the sound wave amplitude, and v:;) is the stress tensor of second order. 

The tensor a!;) satisfies the linearized equations (2.1)-(2.4) which have the form 

(2.9) p ( l )  = 2 (1) 
C P  3 

where po is the equilibrium fluid density, and c is the sound speed. Here, we have used 
the superscript (1) to denote quantities of first order in the sound wave amplitude. 

The tensor (v!;)) in a perfect fluid is known to be expressed through terms of first 
order only. This is not the case in a viscous fluid. In order to find (v:;)) in a viscous 
fluid, one must solve the time-averaged viscous equations of motion in the second 
approximation, the so-called equations of acoustic streaming (Lighthill 1978) : 

(2.10) 

(2.11) 

where d2)  is the fluid velocity of second order. 

right-hand side of (2.6). It can be represented as 
We shall return to (2.7)-(2.11) below, but now let us transform the first term on the 

(2.12) 

where Sis a fixed surface surrounding the sphere, and 7(t)  is the volume bounded by 
the surfaces s(t) and s. 

The first term on the right-hand side of (2.12) is equal to zero. By using (2.7) and the 
relation (Yosioka & Kawasima 1955) 

(2.13) 

one obtains 

Here, we have also used the fact that 

Substitution of (2.14) into (2.6) yields 

(2.15) 

(2.16) 
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It follows from (2.10) that the integral in (2.16) may be taken over any surface 
surrounding the sphere. By using (2.3) and the relation 

(2.17) 

we can write (2.16) in the vector form 

(27(n-V) d2)+,, x (V x ~ ' ~ ' ) + ( ~ - ~ ~ ) n ( V . ~ ( ~ ' ) - n ~ ( ~ ) - p ~  u ( ~ ) ( u ( ' ) . ~ ) )  ds, 

(2.18) 

In order to go on with the calculation of the radiation pressure, one must solve 

= 1% 
where p(') is the fluid pressure of second order. 

(2.7)-(2.11). The next two sections are devoted to finding these solutions. 

3. Solution of the linearized viscous equations of motion 
The velocity u( l )  can be represented as (Lamb 1932) 

V ( l )  = V$+V x v7 (3.1) 

where q5 and I,Y are the scalar and vorticity velocity potentials in the first approximation. 
As usual, the scalar potential can be written as follows: 

q5 = + I + $ S ,  (3.2) 

where is the scalar velocity potential of the incident sound wave, and ds is the first- 
order scalar velocity potential of the scattered wave. 

Note that for progressive and standing waves, the problem involved is axisymmetric. 
Let the origin of the spherical coordinate system (r,  0, e) be at the equilibrium centre of 
the sphere and the wavevector k be in the direction of the z-axis. Then the scalar 
potential in the general case, can be written as 

m 

= exp (- iwt )  C A,j,(kr) Pn (cos O), 
n=o 

(3 3) 

where w is the angular frequency of the incident sound wave, k is the wavenumber, 
given by 

(3.4) 

j ,  is the Spherical BesseI function of order n, P, is the Legendre polynomial of degree 
It, and the A,  are constants to be determined by the type of incident wave. 

The potentials $s and I,Y are found from (2.7) and (2.8) which, by nieans of (2.3), 
(2.9) and (3.1)-(3.3), are reduced to the form 

where k, = (1 +i)/S, S = (2v/w)i, v = ~/p , , ,  v is the kinematic viscosity, and the 
quantity A, = 2x8 is usually called the viscous wavelength. 

By using (2.8) and (3.1>-(3.5), from (2.9) one obtains an expression forp(') which is 
also needed for the subsequent calculations : 

ipo c2k24 /u ,  (3.7) = 
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The axisymmetric solutions of (3.5) and (3.6) meeting Sommerfeld’s radiation 
conditions at infinity are given by 

m 

#s = exp (-iwt) C. a, A ,  h,(kr) P, (cos 0), 

= exp (- iwt) e, C. p, A,  h,(k, r )  Pg) (cos 0), 

(3.8) 

(3.9) 

n=o 

rn 

n=l 

where h, is the spherical Hankel function of the first kind, Pp) is the associated 
Legendre polynomial of the first order, e, is the unit vector of the spherical coordinate 
system, and a, and p, are constants to be determined by the boundary conditions at 
the sphere surface. 

Like dl),  the first-order velocity of the medium inside the sphere can be represented 
as 

(3.10) 

where the tilde denotes quantities that concern the medium inside the sphere. 
There is only a refracted wave inside the sphere and its amplitude must be finite at 

r = 0. Therefore, instead of (3.8) and (3.9) we have 

a(1) = v $+V x p, 

m 

6 = exp (- iwt) C &, A,j,(&r) P, (cos o), (3.11) 

p = exp ( - iwt) e, C j, ~ , j , ( f ,  r )  P$) (cos 01, (3.12) 

where 8, and b,, like a, and p,, are constants to be determined by the boundary 
conditions at the sphere surface. 

n=o 

rn 

n=1 

The above boundary conditions are expressed as follows : 

~ ( l )  = at r = R, (3.13) 
(3.14) 

where po and Po are the equilibrium pressures outside and inside the sphere, 
respectively, and pST is the pressure of the surface tension. 

In spherical coordinates (3.13) and (3.14) take the form 

(g$) - (p, +pST) Sik) nk = (6:;) -Po Sik) nk at r = R, 

0:) = fiy), 0;) = ’ 8  -(I) at y = R, (3.15) 
a;;) -pST -p 2 $1) rr -Po, a$) = 5;;) at r = R. (3.16) 

By using the formulae for the divergences and the curls of the velocities dl) and ij(l) in 
spherical coordinates and taking into account (3.15), one can rewrite (3.16) as follows: 

(3.17) 

where x, = k, R. These equations are more convenient for the subsequent calculations 
than (3.16). 

The pressure of the surface tension is known to be given by 

pST = -2gH, (3.19) 
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where cr is the surface tension coefficient, and H is the mean surface curvature. The 
formula for H can be found, for example, in Korn & Korn (1968). However, to 
calculate H by this formula, an expression is needed for the perturbed surface of the 
sphere. This expression can be written as 

r = R + {(O) exp (-ior), (3.20) 

the function {(O) being given by 

c(O)exp(-iwf) = u-ndt  = -u.n/d, (3.21) 
J 

where u is the sphere surface velocity of first order, ri = du/dt, and the second equality 
in (3.21) follows from the fact that u - exp(-iwt). 

Clearly 
* = fi(1) = u(l’ at I =  R. (3.22) 

Replacing u in (3.21) by fi(‘) at I = R, substituting (3.31) into (3.20), and (3.20) into 
the formula for H (see Korn & Korn 1968), one obtains an expression for H accurate 
to the first-order terms in the amplitude of the incident sound wave as 

H =  H,+H’1’, 
where 

1 7 (n-l)(n+2) 
H, = --, H ( ’ )  = -exp(-iwt) La:,(@, R n=n 2R2 

(3.23) 

(3.24) 

iA, 
<n(~> [</~(i) E n  + n(n + 1)jn(zJ / 7 7 ~  ~ 7 6  (COS 61, (3.25) 

- 
2 = kR, 

Substituting (3.23)-(3.25) into (3.19), we can find pST. Thus, we have all the 
necessary quantities for calculating the constants a,, /3’,L, En and /I,. Substituting 
(3~1)-(3.3), (3.&(3.12), (3.19) and (3.23)-(3.25) into (3.15), (3.17) and (3.18), one 
obtains four combined algebraic equations in the unknowns a,, Pn, Zn and p7‘. These 
equations can be written in matrix form as 

= iv R, and ji(+f) = djn(2)/2. 

M . X = N ,  
where X and N are given by 

X =  

(3.26) 

(3.27) 

in which x = kR.  The elements of the matrix M, for which M 2 1,  are given in 
Appendix A. For n = 0, equations (3.26) are reduced to two combined equations in the 
unknowns a. and kU (/I,, = /To = 0). By solving them, one obtains 

where 

(3.28) 

(3.29) 

(the constant d,, is unnecessary for the calculation of the radiation pressure). 
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For n 2 1, equations (3.26) can be easily solved by one of the conventional methods. 
However, the exact expressions for a, and p, are very complicated. Therefore, they are 
not given in this paper. The approximate expressions for an and /3, (n = 0, 1,2) in some 
limiting cases of interest are given in Appendix B. We shall consider these cases later. 

4. Solution of the equations of acoustic streaming 
The velocity ( v @ ) )  can be represented as follows : 

( u ( 2 ) )  = ( u p )  + ( u p ) ,  (4.1) 

where ( v y ) )  is the velocity of the stationary flow which exists in the sound field in 
absence of the sphere, and (v !$ ) )  is the velocity of the acoustic streaming arising around 
the sphere. Like dl), the velocity ( v g ) )  can be written as 

(u?’)  = V @ + V  x Y, (4.2) 

where @ and Yare the scalar and vorticity velocity potentials of the acoustic streaming. 
Substituting (4.2) into (2.3), (2.10) and (2.1 1) we obtain, after some manipulation, 

equations for @, Y and <p$)) (we write <p$)) for the pressure of the acoustic 
streaming) as 

A@ = - p,’V - (p(l)di))s, 

AAY = - u-’V x ( U“)(V - dl)) + (d l )  - V) IP))~, 
(4.3) 

(4.4) 

(4.5) 

V(Pf)) = 9AV x Y-po(di’(V*dl’) +(v‘”*V) v ‘ ” ) ~ - ~ ~ ’ ( [ + & I )  V(V- (~ ( l )~ ( l ) ) ) , . j . .  

Here, we have also used the subscript S on the right-hand sides to indicate that the 
expressions do not involve components that are only expressed in terms of the incident 
wave. For example, (p(l)v(l))s = (p(l)zl(l)) - (py)@)) ,  where u y )  = Vq51 and 
py) = ip, k2q5,/o (see (2.9) and (3.7)). 

First, we shall solve (4.3). The term on its right-hand side can be expanded in 
Legendre polynomials as 

where 

V ( ~ ( ~ ) v ( l ) ) ~  Pn (cos 0) sin 0 do, 

and y = r / R .  
It is obvious that @ should be sought in the following form: 

m 

@ = c Qn( y )  Pn (cos 0). 
n=o 

(4.7) 

Substituting (4.6) and (4.8) into (4.3), one obtains an equation for the function Qn(y) :  

where @;( y )  = dGn( y)/dy. 
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The solution of (4.9) is 

It follows from the condition V@ + 0 as r + so that 

The constant C, ,  is to be determined by the boundary conditions at the sphere surface. 
The solution of (4.3) has been obtained, and now we look for the solution of (4.4). 

The term on its right-hand side can be expanded in Legendre polynomials and in 
associated Legendre polynomials as 

cc. 

v-1( u(l'(V. u(1)) + (u(1).  8) u(1)) - % c (2n + 1) xr,( y )  P, (cos 0) 
- R n=o 

e m  
R3 n=l 

- 2 c (2n + 1) xen( y )  P:) (COS 6), (4.12) 

where 

x,,(y> = e T . ( u ( l ) ( V . u ( l ) ) + ( u ( l ) . V )  u ( ~ ) ) ~  Pn(cos0)sin6dB, (4.13) R31 
r e , . (v" ) (V .  V(")+(U(~).O) U ( ~ ) ) , P : )  (cos 8)sinBdO. (4.14) 

R3 
X s n ( Y )  = - 2vn(n + 1) 

This term can be written as 

where (4.16) 

(4.17) 

Equating the terms on the right-hand side of (4.15) to those on the right-hand side of 
(4.12), one obtains two simultaneous equations for the functions Q,( y )  and qn(y) : 

.YQ~(u> + n(n + 1) qn(Y) = (2n + l > ~ x r n ( ~ ) ,  (4.18) 

Q,(Y)+YB~(Y)  + q n ( ~ )  = (2n+ ~)YxO~(Y). (4.19) 

Solving (4.18) and (4.19) by the Lagrange method, one finds 

Q,<Y> = y-(,+l) ( n  s i n + '  [xT,(z) + (n  + 1) Xon(z)1 dz- ~ 3 n )  
1 
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It follows from the boundary conditions at infinity that 

c,, = (n+ l )~~z -"~x , , ( z f -nx , , ( . ) ld~ .  (4.22) 

Like C1,, the constant C,, is to be determined by the boundary conditions at the sphere 
surface. 

Further, substitution of (4.15) into (4.4) yields 

A A Y  = Aq (4.23) 

or equivalently A Y  = q.  (4.24) 

Taking into account (4.17), the solution of (4.24) is sought in the form 
m 

Y = ec C Y,( y )  l't) (cos 8), 
n-1 

Substituting (4.25) into (4.24), one obtains an equation for the function Y,(y) 

The calculations give 

(4.25) 

(4.26) 

(4.27) 

Note that (4.10) contains the term C,,/y"+' which yields the same velocity field as 

Actually, 
the term C6,/2(2n + 3)yn+' of (4.27). 

V x [e, P'," (cos O)/yn+l] = -nV [P, (cos O)/yn+']. (4.28) 

In view of this, the above-mentioned term in (4.27) can be dropped, i.e. we can assume 
c,, = 0. 

It follows from the condition V x Y+ 0 as r +  00 that 

(4.29) 

Finally, substituting (4.15) into (4.5) and using (4.24), one obtains an expression for 
(pg)) as 

(4.30) 

With the exception of the constants C,, and C,,, the solutions of the equations of 
acoustic streaming outside the sphere have been derived. To find the above constants, 
the following boundary condition should be applied 

o = 5 at r = R+[(B)exp(-iwt), (4.3 1) 
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where v and fi are the exact velocities of the media outside and inside the sphere, 
respectively. That is to say, we apply the boundary condition of continuity of the fluid 
velocity across the sphere surface to the perturbed surface of the sphere. This boundary 
condition should be written with an accuracy up to the second-order terms and be 
averaged over a sound wave cycle. This results in 

Suppose that the sphere does not execute a 'slow' motion. To put it in another way, 
we suppose that the sphere is not moving in the second approximation (for example, 
we can assume that the sphere is acted on by an external force that is equal and 
opposite to the acoustic radiation force). Equation (4.32) then takes the form 

< v r ) >  = w-2 (~,.y) - ( v y ) )  at r = R. (4.33) 

Thus, for the calculation of the constants Cln and C3,, it is not necessary to solve the 
equations of acoustic streaming inside the sphere. 

The terms on the right-hand side of (4.33) can be written as 

where 

h, = PF)(cosO)sinOdO at r = R .  (4.36) 
2n(n + 1) 

Substituting (4.2), (4.8), (4.10), (4.25), (4.27) and (4.34) into (4.33), one finds 

n(2n - 1) n(2n + 1) 
= 2(n + 1) czn +4(n + 1) (2n + 3) C,n -inC,n 

(2n+l)(n-2) n(2n+1) 
a,+ 2 b,, n 0, (4.37) 

+ 2(n+1) 

5. Completion of the calculation of the radiation pressure 

(4.25) and (4.30) into (2.18) and using (4.9), (4.24) and (4.26), one obtains 
Now we can resume calculating the radiation pressure. Substituting (4.2), (4.6), (4.8), 
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where m is the unit vector in the direction of wave propagation. Then. substituting 
(4.11), (4.22) and (4.29) into (4.38), and (4.38), in its turn, into (5.1) and using the 
relation 

= t P , r d r r d Q l y d y ( l  0 0 - y P )  ( v ( ' ) ( . ( ' ) . n ) ) , - p , , l ~ ~  (d')(d')-n)),ds, (5.2) 

where dQ = R2 sin 6' do, one has 

F = 6x7m(al + 2bJ + 3xvm 1; 1 V -  ( p ( ' ) ~ ( ' ) ) ~  cos 6'dO dy 

- 3np0 rn 1: [ (1 -y+) [ ( v p ) v ~ )  cos B - 2ip)vr) sin o>, 

++Rye,. (V( ' ) (V.V(~))+(V( ' ) .V)  v(1)),qsin8]dOdy. (5.3) 

To complete the calculation of the radiation pressure, it is necessary to substitute the 
solutions of the linearized viscous equations of motion which have been derived in $3 
into (5.3). After carrying out this operation, the general expression for the radiation 
pressure takes the final form 

where F = F .  m, 
F = F' + FD, (5.4) 

The expressions for the functions Sin ( j  = 1, . . . ,9) are given in Appendix C. 
The force FR is just the radiation pressure. The force FD is brought about by the 

stationary flow which is in the sound wave field even when the sphere is absent. This 
force is an analogue of Stokes' drag force. 

We are interested in two types of sound waves : a plane progressive wave and a plane 
standing wave. The scalar velocity potential of the plane progressive wave is given by 

= A exp (ik . r - iwt). (5.8) 

By expanding (5.8) in Legendre polynomials (Abramowitz & Stegun 1965) and 
comparing the series obtained with (3.3), one has for A ,  

A ,  = A(2n + 1) i". (5.9) 

Substituting (5.9) into (5.9, one obtains an expression for the radiation pressure 
exerted by the plane progressive wave: 

cc 

FR = :inpoAA* (n+ l)(Dn--D:). 
n=o 

(5.10) 
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By solving (2.10) and (2.11) for the incident sound wave only (i.e. when the sphere 
is absent) it can be readily derived that 

(@) = -- IkA"(k+k*)exp(ik.r-ik*.r). 
4w 

Substitution of (5.11) into (5.7) yields 

sin (x - x*) 
FD = -%i.rrp,AA*xx*(x+x*)x,' x-x* . 

The scalar velocity potential of the plane standing wave is given 

Q I  = A cos ( k . r + k d )  exp (-iwt), 

(5.1 1) 

(5.12) 

by 

(5.13) 

where d is the distance between the equilibrium centre of the sphere and the nearest 
plane of the velocity nodes. By expanding (5.13) in Legendre polynomials and 
comparing the series obtained with (3.3), one finds 

A ,  = iA(2n -k 1) in [exp (ikd) + (- 1)" exp (- ikd)]. (5.14) 

Substituting (5.14) into (5.5), one obtains an expression for the radiation pressure 
exerted by the plane standing wave: 

cc 

FR = inpo AA* (- l)"(n + 1) (D, sin (2kd)  +D: sin (2k"d)). (5.15) 
n=o 

It can be easily verified that for the case of the standing wave 

i lkAI2 
8 0  

(q') = __ [(k-k*)sin[(k+k*)(z+d)]-(k+k*)sin[(k-k*)(z+d)]J. (5.16) 

Substitution of (5.16) into (5.7) results in 

sin (x + x*) 
x+x* 

FD = - $po AA* (x - x*) sin (kd+ k*d) 

1. (5.17) 
sin (x - x*) 
x - x* 

-(x+x*)sin(kd-k*d) 

Next, some limiting cases of interest are considered. It is to be emphasized that the 
force FD (which, generally speaking, does not concern the radiation pressure) will only 
be mentioned in the cases when it is of the same order as the force FR. 

6. Radiation pressure on the sphere in the limiting case 1x1 < 1 < Ixv(, 
111 4 1 < If,l 

The approximate expressions for the functions Sin required for calculating the 
radiation pressure in this limit are given in sC.2 of Appendix C. 

6.1. h = ( po c 2 ) / (  ,Go P )  = U(1), p = [( po v)/( b0 f ) ] ;  = U(1) or h < 1, p 4 1 
These conditions describe the motion of a liquid drop suspended in another liquid or 
in a gas. The principal contribution to (5.5) comes from Do and D,. The approximate 
expressions for the constants a0, a, and p1 required for calculating these terms are given 
in gB.1.1 of Appendix B. 
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6.1.1. Plane progressive wave 

Substituting all the necessary quantities from the above-mentioned Appendices into 
(5.10) and retaining only the leading term in the expansion of the radiation pressure in 
powers of x, one obtains 

where k,  = w / c .  
In a perfect fluid, the radiation pressure exerted by the plane progressive wave is 

known to be proportional to (k ,  R)6 (Yosioka & Kawasima 1955). It follows from (6.1) 
that the leading term in the expression for the radiation force in a viscous fluid is 
proportional to (k,R)3S/R. Thus, the viscosity, even though it is small, can cause a 
substantial increase of the radiation pressure. This phenomenon must be observed 
for a drop under the condition R 4 h,(S/h$. 

6.1.2. Plane standing wave 
The calculations show that, in this case, the leading term in the expression for the 

radiation pressure in a viscous fluid is the same as that for the radiation pressure in a 
perfect fluid. 

6.2. h $ 1, p, % 1 

These conditions describe the motion of a gas bubble immersed in a liquid. The 
principal contribution to (5.5) comes from Do. The approximate expressions for the 
constants a,, a1 and required for calculating this term are given in sB.1.2 of 
Appendix B. 

6.2.1. Plane progressive wave 

(5.10), one obtains 
Substituting all the necessary quantities from the above mentioned Appendices into 

(k, R ) ' + ? j ( 7 - 3 ~ : / 0 ~ ~ ) ( k ~  R) (SIR)' 
FR = 2np, AA* 

( I  - w;/w')>" + [k, R + 2(S/R)2]2 ' 

where wo is the angular resonance frequency of the gas bubble which is given by 

1 
R 

0, = - (3C"26,/p0 - 2a/p, R)! 

By comparing (6.2) with the corresponding formula for the radiation pressure in a 
perfect fluid (see Yosioka & Kawasima 1955), we conclude that taking into account the 
viscosity yields a correction, the magnitude of which depends on the ratio of the 
quantities k, R and R/S. This correction becomes dominant when R 4 (A, 8);. It is 
easily seen that since A, % R % 8, as is assumed, this situation, in principle, can occur. 
Moreover, if this happens, the force FR can change its sign if wt > gw', i.e. the bubble 
will move in the direction of the sound-emitting transducer, while in a perfect fluid the 
bubble always moves in the direction of wave propagation (Yosioka & Kawasima 
1955). 

6.2.2. Plane standing wave 

fluid is identical with that for the radiation pressure in a perfect fluid. 
In this case, the leading term in the expression for the radiation pressure in a viscous 
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7. Radiation pressure on the sphere in the limiting case 1x1 < 1.x~ < 1, 
121 4 + I 

The approximate expressions for the functions Sj,  required for calculating the 
radiation pressure in this limit are given in EjC.3 of Appendix C. 

7.1. A = 0(1), p,/& = 0(1) or A < 1, p,, < fin, the rutio r/ij may be arbitrary 

This is the case of a liquid drop suspended in another liquid or in a gas. The principal 
contribution to (5.5) comes from Do and D,. The approximate expressions for the 
constants a, and p, (n  = 0,1,2) required for calculating these terms are given in tjB.2.1 
of Appendix B. 

7.1.1. Plane progressive wave 

(5.10) and retaining only the leading term, one finds 
Substituting all the necessary quantities from the above mentioned Appendices into 

F - L  - s ~ p ,  AA*(5 - 2A - Sf,) (k, R)3(8/R)2. (7.1) 

The expression for the functionf, is given in EjB.2.1 of Appendix B. It should also be 
noted that (7.1) is valid under the condition 

where g ,  = 8 9 + 4 8 ~ / + + 3 8 t / r l  (7.3) 

(see the note at the end of gB.2.1 of Appendix B). 
As already mentioned, the radiation pressure exerted by the plane progressive wave 

is proportional to (k, R)6 in a perfect fluid. It follows from (7.1) that the force FH is 
proportional to (k, R)3(6/R)2, the quantity SIR being large. This leads us to conclude 
that the magnitude of the radiation force in a viscous fluid is substantially larger than 
that of the radiation force in a perfect fluid. Moreover, it is easily seen that the 
expression between the first round brackets in (7.1) can change its sign. That is to say, 
the force given by (7.1) can set the drop moving both in the direction of wave 
propagation and in the opposite direction. while in a perfect fluid the drop is always 
urged away in the direction of wave propagation. 

These conclusions may be illustrated by considering the particular case of an 
ethyl alcohol drop in glycerin. For glycerin at 20 "C and p ,  = lo5 Pa one has p ,  = 
1.26 x lo3 kg mP3, c = 1.9 x lo3 m s-l, ?I = 1.48 Pa s. For ethyl alcohol the same 
quantities are Po = 0.79 x lo3 kg mP3, c" = 1.04 x 10' m s-', i j  = 1.2 x Pa s, 
IJ = 2.23 x 10 N m-l. Setting R = lop6 m and f = 1 kHz (where f is the sound wave 
frequency), one obtains 1x1 x 3.3 x IxJ x 2.3 x loP3, 121 x 6.10-6, IZJ w 6.4 x lopz. 
Thus, the conditions 1x1 4 Ix,I < 1 and 1x1 4 (K,l < 1 are satisfied. It can be verified that 
condition (7.2) is satisfied, too. Substituting all the necessary quantities into (7.1), one 
finds 

F ~ ~ ,  - n p o ~ ~ * ( k ,  ~ ) 3  x 2.9 x 105. (7.4) 

The radiation pressure calculated by the corresponding formula for a perfect fluid (see 
Yosioka & Kawasima 1955) is given by 

FRP z 7 ~ p , A A * ( k , R ) ~ x  1 . 6 ~  (7.5) 

The ratio of \FEJ to IFEp! is of the order of 10". 
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It is to be noted that the force FD given by (5.12) is of the same order as the force 
FR in the case involved. Actually, passing to the limit 1x1 < 1, from (5.12) one obtains 

FD = -g~p ,AA*(k ,  R)3(S/R)2. (7.6) 

(7.7) 

It follows that the total force F is written as 

F = -$EP,, AA*(2 + h + 4f1) (k, R), 

For a drop placed in a gas the total force F can become very small since h < 1 
andf, + -: as q/+j + 0. In this case, the next term in the expansion of FR in powers of 
R/S should be found since it may be of the same order as that given by (7.7). 

7.1.2. Plane standing wave 

(5.15) and retaining only the leading term, one obtains 
Substituting all the necessary quantities from the above mentioned Appendices into 

FR = np,, AA* sin (2k, d )  (k, R)3G, (7.8) 

where G = i(S, + S,  + S,), (7.9) 

s, = 1 -h+&U - i j o /PJ ,  (7.10) 

s, = 2Yl(2fz- 1)-4f,, (7.11) 

s, = (43 - 10h - 120(3 - 7 / q )  (f, -fJ + 5OfJ. 
3OPo(3 27/% 

(7.12) 

The expressions for the functionsh are given in 5B.2.1 of Appendix B. Just as for (7. l), 
formula (7.8) is valid as long as condition (7.2) holds. 

As before, let us study (7.8) by comparing it with the corresponding expression for 
a perfect fluid. The latter is known to be proportional to (k0R), .  The radiation force 
in a viscous fluid is found to be proportional to (k, R)3, too, but its structure is quite 
different. To demonstrate the distinctions, let us consider two limiting cases : f 9 7 and 
i j  < 7. For the first of these, from (7.9)-(7.12) one obtains 

* 

1-h+x~(2 -h ) -P f i (5 (9+2h)+x~(63+10h) )  
9OPo 

where 
20n 

X l = M '  

and instead of (7.2) one has 
nRpnl(7r") < 1. 

(7.14) 

(7.15) 

Formulae (7.13k(7.15) describe the motion of a liquid drop in a gas or of a high- 
viscosity liquid drop in a low-viscosity liquid. It is apparent that the factor G can be 
both positive and negative. A drop for which G > 0 is urged away towards the velocity 
antinodes. Conversely, a drop for which G < 0 is forced away towards the velocity 
nodes. The same phenomenon occurs in a perfect fluid, too, but the condition under 
which the radiation force changes its sign is different. To illustrate this, let us consider 
the particular case of a glycerin drop in an air. The data for glycerin are given above, 
except n that is taken to be equal to 6 . 5 7 ~  10-2Nm-1. For air under the same 
conditions one has po = 1.2 kg m-3, c = 330 m s-l, 7 = 1.8 x Pa s. Setting 
R = m and f =  1 kHz, one obtains: 1x1 2: 1.9 x lop5, Ix,I z 2 x lo-', 121 M 
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3.3 x l O P ,  lTul z 2.3 x lop3. Note that the conditions 1x1 4 Ix,I 4 1 and l-fl 4 lZul 4 1 
are satisfied, as well as (7.15). Substituting all the necessary quantities into (7.Q (7.13) 
and (7.14), one finds 

FR, % - 7cp, AA* sin (2k, d )  (k ,  R)3 x 2.4 x lo2, (7.16) 

while for a perfect fluid we have 

FRp z ~ p ,  AA* sin (2k, d )  (k ,  R)3 x 0.22. (7.17) 

Thus, taking into account the viscosity causes a substantial increase of the radiation 
force and changes its sign. 

Now let us consider the limit 0 4 7. From (7.9)-(7.12), one obtains 

where 
5a 

x2 = GRq 7 

and condition (7.2) becomes 
cRp , / y2  + 1. 

(7.18) 

(7.19) 

(7.20) 

This is the cabe of a low-viscosity liquid drop suspended in a high-viscosity liquid. To 
illustrate this, let us consider the particular case of a water drop in glycerin. The data 
for glycerin are given above. For water one has 8, = lo3 kg m-3, 2 = 1.5 x lo3 m s-l, 

= lop3 Pa s, a = 7.27 x lop2 N m-l. Setting R = lop6 m andf= 1 kHz as before, one 
obtains: 1x1 % 3.3 x lop6. Ix,/ % 2.3 x lop3, 121 z 4.2 x lop6, IZJ ;2: 8 x lo-'. It is apparent 
that the conditions 1x1 4 IxJ 4 1 and I-fI 4 ITul 4 1 are satisfied. It is easily verified that 
(7.20) is satisfied, too. Substituting all the necessary quantities into (7.8) and (7.18), one 
finds 

FR. z n~,AA*sin(21c,d)(k,R)3 x 1.99 x lo4. (7.21) 

Meanwhile, for a perfect fluid the radiation force is given by 

FRp % -np0 AA* sin (2k, d )  ( k ,  R)3 x 0.44. (7.22) 

By comparing (7.21) with (7.22), we conclude that the same distinctions occur as in the 
first case, i.e. the radiation force exerted by a plane standing wave in a viscous fluid is 
really drastically different from that due to a plane standing wave in a perfect fluid. 

7.2. A + 1 ,  + 60, 7 9 +j 
In this case, a gas bubble immersed in a liquid, the principal contribution to (5.5) comes 
from D,. The approximate expressions for the constants a,, a, and p1 required for 
calculating this term are given in tjB.2.2 of Appendix B. 

7.2.1. Plane progressiz)e wave 

(5.10) and retaining only the leading term, one obtains 
Substituting all the necessary quantities from the above-mentioned Appendices into 

(7.23) 

The radiation pressure exerted by a plane progressive wave on a gas bubble in a 
perfect fluid is known to be proportional to (k, R)2 (Yosioka & Kawasima 1955). It is 
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apparent that the radiation force given by (7.23) is substantially larger than that in a 
perfect fluid. Moreover, the force FR can change its sign according to whether w i  < 50’ 
or w i  > 5w2. Thus, for gas bubbles the same phenomena occur as for drops. 

To illustrate this, let us consider the particular case of an air bubble in glycerin. All 
the required data for glycerin and air have been given above. Setting R = m and 
f= 1 kHz, from (7.23) one finds 

F ~ ,  --Po AA* x 2.2 x 10-7, (7.24) 

while for a perfect fluid we have 

FRp NN xpo AA* x 8 x (7.25) 

The ratio of 1FRJ to IFR,[ is of the order of 1017. 

7.2.2. Plane standing wave 
Substituting all the necessary quantities from the corresponding Appendices into 

(5.15) and retaining only the leading term in the expansion of the radiation pressure in 
powers of (k, R), one obtains 

1 - w i / w 2  - ( c ~ / R ) ~  
(1 - W ; / W ~ ) ’ + ~ ( S / R ) ~  

FR = np0 AA* sin (2k0 d )  (k,  R) (7.26) 

By comparing (7.26) with the corresponding formula for a perfect fluid (Yosioka & 
Kawasima 1955), we conclude that the radiation force in a viscous fluid can be in 
general substantially larger than that in a perfect fluid. To illustrate this, let us again 
consider the case of an air bubble in glycerin. Then for the ratio of FRv to FRp, one 
obtains 

F ~ ~ I F ~ ~  = 2.6 x 104. (7.27) 

It follows that the radiation force exerted by a standing wave is increasing in a viscous 
fluid, although not so much as that due to a progressive wave, the former having the 
same sign as in a perfect fluid. 

To summarize, the calculation of the radiation pressure from the formulae for a 
perfect fluid in cases when the viscosity effect is not negligible gives, both quantitatively 
and qualitatively, wrong results. 
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Appendix B. Approximate expressions for the constants a., and pn 
(n = 0,1,2) in two limiting cases 

B.1. Case 1x1 4 1 4 IxJ, 121 4 1 4 12:2,1 

B.I.I. A = ( p , c 2 ) / ( ~ , , ~ )  = 0(1), ,u = [boq)/~n,~)~' = W) or < < L p 4 1  

ix(w;/w' - 1 + ix - 4/x3 2u 
a" = 

( w i / w 2  - l)z + (x + 4i/x3' ' 

B.2. Case 1x1 4 (x,( 4 1, 121 < I?,\ 4 1 

B.2.1. X = 0(1), pulpO = O(1) or h < 1, po/po < 1, the ratio o f q  to + may be 
arbitrary 
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B.2.2. h 9 1, pO/fiO 9 1, ~ / 1 ?  9 1 

ix(w:/w2 - 1 - 4/x3 
cLO = ~ a1 = 

(w; /w2 - 1)2 - 16/x; ’ - ix3(3 - x3/27, p1 = - ixx9(3 - ~ 3 2 7 .  

L L 

xx* +- (G:)*(x*) + GF)(x)), 
2% 
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F“(- l)’(n+k)!(m+q)!. 
kg - (2i)”qk!(n-k)!q!(m-q)!’ 

B -  M = 2 + k + q + j ;  j = - 1,0,1,2; 

x = kR,  X, = k, R, 
G:: ’(x) = x*(@)(x))’(~; ’(x*))’ + ~(h$~~(x))’(h~l,(x*))’, 

(n  + 1) x2* 
X: 

K ,  ( 1 )  (x,x*) = (h;)(x*))’h:)(x,) - x*(h;~,(x*))’(h~;,l(~u))’, 

I = 1,2; (h$i’(~))’  = dhi’(x)/dx. 

Here h:i)(z) is the spherical Hankel function of the Ith kind, E,(z) is the integral 
exponent of order n (Abramowitz & Stegun 1965). 
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(2.2. Approximate expressions for the functions Sj,(n = 0, l )  in the limiting case 
1x1 4 1 4 Ix,I 

s,, = 4x-3x,2, S,, = 8 1 ~ - ~ ~ , ~ ,  

s,, = 0, S,, = 3 x 3  1 + 2i) exp (ix, -xu), 

S,, = 10x-1x;2 exp (-xu), S,, = ~ O ~ X - ~ X ; '  exp (-xu), 

s40 = O, S,, = 1 2 6 ~ ~ ~ ~ ; ~  exp (ix,), 

S,, = $i(l +xi2), S,, = 3 ( 5  + 14xi2), 

," 60 = 2i(l 3 -x+) v 7  S,, = &i(5 - 14xi2), 

s,, = 0: 2i 
15 

S,, = - -xX2xi2 exp (ix,), 

4i 
s80 = 7 x2xi2 exp (-xu), 

s,, = s,, = $x3x,2. 

S,, = 2xxi3( 1 + x,) exp (- xv), 

C.3. Approximate expressions for the functions Sj,(n = 0, l )  in the limiting case 

The expressions for the functions S,,, S,,, S,, and S,, (n = 0, l )  are identical with the 
ones given above. 

1x1 4 Ix,I 4 1 

s,, = 0, S,, = - 6ixi7(27 -xi), 

S,, = ixP2xi5( 162 - 15x3, 4 -1 -4 s,, = TX x, (3 +xi), 

s70 = O, 

S,, = - +ix2xv4(2 - 5x3, 

s,, = 0, S,, = -;x-,xi4( 18 +xi), 

S,, = -&i~'x;~(7 + 4x3, 

S,, = xxi3(2 - xi). 
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